Downregulation of Adipose Glutathione S-Transferase A4 Leads to Increased Protein Carbonylation, Oxidative Stress, and Mitochondrial Dysfunction
نویسندگان
چکیده
OBJECTIVE Peripheral insulin resistance is linked to an increase in reactive oxygen species (ROS), leading in part to the production of reactive lipid aldehydes that modify the side chains of protein amino acids in a reaction termed protein carbonylation. The primary enzymatic method for lipid aldehyde detoxification is via glutathione S-transferase A4 (GSTA4) dependent glutathionylation. The objective of this study was to evaluate the expression of GSTA4 and the role(s) of protein carbonylation in adipocyte function. RESEARCH DESIGN AND METHODS GSTA4-silenced 3T3-L1 adipocytes and GSTA4-null mice were evaluated for metabolic processes, mitochondrial function, and reactive oxygen species production. GSTA4 expression in human obesity was evaluated using microarray analysis. RESULTS GSTA4 expression is selectively downregulated in adipose tissue of obese insulin-resistant C57BL/6J mice and in human obesity-linked insulin resistance. Tumor necrosis factor-alpha treatment of 3T3-L1 adipocytes decreased GSTA4 expression, and silencing GSTA4 mRNA in cultured adipocytes resulted in increased protein carbonylation, increased mitochondrial ROS, dysfunctional state 3 respiration, and altered glucose transport and lipolysis. Mitochondrial function in adipocytes of lean or obese GSTA4-null mice was significantly compromised compared with wild-type controls and was accompanied by an increase in superoxide anion. CONCLUSIONS These results indicate that downregulation of GSTA4 in adipose tissue leads to increased protein carbonylation, ROS production, and mitochondrial dysfunction and may contribute to the development of insulin resistance and type 2 diabetes.
منابع مشابه
Carbonylation of adipose proteins in obesity and insulin resistance: identification of adipocyte fatty acid-binding protein as a cellular target of 4-hydroxynonenal.
Obesity is a state of mild inflammation correlated with increased oxidative stress. In general, pro-oxidative conditions lead to production of reactive aldehydes such as trans-4-hydroxy-2-nonenal (4-HNE) and trans-4-oxo-2-nonenal implicated in the development of a variety of metabolic diseases. To investigate protein modification by 4-HNE as a consequence of obesity and its potential relationsh...
متن کاملGlutathionylated Lipid Aldehydes Are Products of Adipocyte Oxidative Stress and Activators of Macrophage Inflammation
Obesity-induced insulin resistance has been linked to adipose tissue lipid aldehyde production and protein carbonylation. Trans-4-hydroxy-2-nonenal (4-HNE) is the most abundant lipid aldehyde in murine adipose tissue and is metabolized by glutathione S-transferase A4 (GSTA4), producing glutathionyl-HNE (GS-HNE) and its metabolite glutathionyl-1,4-dihydroxynonene (GS-DHN). The objective of this ...
متن کاملCarbonylation of Adipose Proteins in Obesity and Insulin Resistance IDENTIFICATION OF ADIPOCYTE FATTY ACID-BINDING PROTEIN AS A CELLULAR TARGET OF 4-HYDROXYNONENAL*□S
Obesity is a state of mild inflammation correlated with increased oxidative stress. In general, pro-oxidative conditions lead to production of reactive aldehydes such as trans-4-hydroxy-2-nonenal (4-HNE) and trans-4-oxo-2nonenal implicated in the development of a variety of metabolic diseases. To investigate protein modification by 4-HNE as a consequence of obesity and its potential relationshi...
متن کاملAlterations in Glutathione Redox Metabolism, Oxidative Stress, and Mitochondrial Function in the Left Ventricle of Elderly Zucker Diabetic Fatty Rat Heart
The Zucker diabetic fatty (ZDF) rat is a genetic model in which the homozygous (FA/FA) male animals develop obesity and type 2 diabetes. Morbidity and mortality from cardiovascular complications, due to increased oxidative stress and inflammatory signals, are the hallmarks of type 2 diabetes. The precise molecular mechanism of contractile dysfunction and disease progression remains to be clarif...
متن کاملElevated mitochondrial cytochrome P450 2E1 and glutathione S-transferase A4-4 in streptozotocin-induced diabetic rats: tissue-specific variations and roles in oxidative stress.
Oxidative stress is an important factor in the etiology and pathogenesis of diabetes. We investigated changes in mitochondrial production of reactive oxygen species (ROS) and mitochondrial antioxidant defense systems in different tissues of streptozotocin (STZ)-induced diabetic rats. Our results show that increased ROS production and oxidative stress differentially affect mitochondrial and cyto...
متن کامل